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Abstract—Recently, researchers have sought to find the ideal 

way to recognize human actions through video using artificial 

intelligence due to the multiplicity of applications that rely on 

it in many fields. In general, the methods have been divided 

into traditional methods and deep learning methods, which 

have provided a qualitative leap in the field of computer 

vision. Convolutional neural network CNN and recurrent 

neural network RNN are the most popular algorithms used 

with images and video. The researchers combined the two 

algorithms to search for the best results in a lot of research. 

In an attempt to obtain improved results in motion 

recognition through video, we present in this paper a 

combined algorithm, which is divided into two main parts, 

CNN and RNN. In the first part there is a preprocessing stage 

to make the video frame suitable for the input of both CNN 

networks which consist of a fusion of Inception-ResNet-V2 

and GoogleNet to obtain activations, with the previously 

trained wights in Inception-ResNet-V2 and GoogleNet and 

then passed to a deep Gated Recurrent Units (GRU) 

connected to a fully connected SoftMax layer to recognize 

and distinguish the human action in the video. The results 

show that the proposed algorithm gives better accuracy of 

97.97% with the UCF101 dataset and 73.12% in the hdmb51 

data set compared to those present in the related literature. 
  

Keywords—human action recognition, GRU, RNN, CNN, 

video classification, activity recognition 

 

I. INTRODUCTION 

Throughout the ages, man has been searching for a way 

to simulate the human mind with its superior capabilities. 

These efforts have been translated into the science of 

artificial intelligence, machine learning, and neural 

networks. Many methods and algorithms have been 

invented that make the machine work like the human mind 

and acquire some of its capabilities, such as recognition of 

(action, speech, face, objects, etc.) [1−10], forecast 

prediction [11], decision-making [12], etc. 

Video-based action recognition remains a difficult 

challenge because of the complex background, the object's 

appearance, and the range of behaviour patterns. Video 

may be considered a collection of image sequences that 

include temporal and spatial domain information. As a 

result, the fundamental challenges of action recognition 
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are the variety of behaviour scales in the time domain and 

the appearance of moving objects in the spatial domain. 

Because of the addition of the time dimension, the intra-

class variation of behaviour samples is greater than in 

image recognition. Feature extraction from video data is 

very complex due to varying action durations, particularly 

in the temporal domain. Spatiotemporal feature extraction 

is a critical and fundamental phase in visual recognition. 

Several traditional approaches sought to extract additional 

features from the local spatiotemporal cube. Recent years 

have seen an explosion in the usage of Convolutional 

Neural Networks (CNN) [13] based methods across the 

board in computer vision applications such image 

classification, segmentation, and understanding [14−19], 

face recognition [20, 21], foreground detection [22], target 

tracking [23, 24], etc. 

In this paper, we create an algorithm to improve video 

human action recognition; we first extract the frames from 

the video and prepare them to fit the input of both 

Inception-ResNet-V2 and GoogleNet as Convolutional 

Neural Networks (CNN). CNNs have been shown to 

effectively extract spatial characteristics from static 

images, so we used them to get the activations from each 

video frame and then pass them into deep Gated Recurrent 

Units (GRU) as the RNN stage and finally into the full 

connected SoftMax layer to get the classified action. 

This combination of fusion of Inception-ResNet-V2 and 

GoogleNet as the CNN stage and deep GRU as the RNN 

stage succeeded in improving the accuracy of the action 

recognition in videos compared to those present in the 

related literature. 

The remaining of this work is structured as follows. 

Section II introduces the related work and background. 

Section III describes in detail the proposed algorithm for 

action recognition. Section IV describes the results of the 

experiments. The final section shows our conclusion. 

II. RELATED WORK AND BACKGROUND 

Many deep network-based systems for action 

recognition have been presented throughout the last decade 

by researchers. Traditional data mining involves manually 

extracting several sets of features from time-series signals 

and mapping these features to different human activities. 
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For action recognition, these systems take low-level 

features from video input and pass them to a classifier like 

a support vector machine (SVM), decision tree, or KNN. 

Yin et al. [25] used a single-class SVM for activity 

recognition for the first time. 

Deep learning starts to penetrate our studies and lives as 

hardware computing capability improves. CNN and RNN 

are popular deep learning frameworks. Chen et al. [26] 

suggested a human-based activity recognition model, 

which is a deep neural network architectural model. Yang 

[27] and colleagues proposed the deep CNN-based 

learning method for HAR to automate feature learning 

from primary inputs systematically. Learning features 

were viewed as high-level, low-level abstract 

representations of original time-series signals via deep 

architecture. Zibin et al. [28] introduced a system for 

learning and researching various important meta-

parameters like the number of convolutional layers and 

kernel size on CNN efficiency. Zeng et al. [29] suggested 

the CNN partial weight sharing strategy, which improved 

accuracy significantly. For multimodal data, Ha and Choi 

[30] proposed a sharing of partial weight and full weight 

sharing mechanism. Ronau and Cho [31] compared the 

performance of RF and CNN, and the results revealed that 

CNN had a higher recognition accuracy than RF. 

Many attempts to use deep learning approaches for 

process recognition have been made, spurred on by the 

enormous success of the CNN model for image 

recognition. A 3D CNN was developed by Ji et al. [32] by 

convoluting the local space-time of multiple frames. An 

excellent deep learning model for behavior recognition, 

this method achieved excellent results on real-world scene 

datasets. For spatiotemporal features, Tran et al. [33] 

modified the traditional 2D kernels and used 3D CNNs. To 

capture single-scale spatiotemporal features, the 3D CNN 

model uses a single-scale image sequence as input. To 

integrate distinct images into the video and develop a CNN 

model for visual sequences, to fuse video images, 

Karpathy et al. [34] used a slow fusion model. With this 

method of fusion, video sequence information can be 

added to the network effectively, and behavior 

characteristics can be expressed more effectively. 

However, the model only receives a single image from a 

video as input. The optically flowing video has been used 

as a motion indicator in several algorithms developed in 

recent years. Using a single RGB image (spatial 

information) and a stack of optical flow images (temporal 

information), Simonyan et al. [35] developed a two-stream 

network for action recognition. Two-stream network with 

new fusion method proposed by Feichtenhofer et al. [36] 

And each stream is still the standard CNN 2D format, as 

well. A limitation of the optical flow was discovered by 

[37]. A lighting change can produce optical flow, which is 

the apparent motion of intensity values without any actual 

motion. This means that there are certain limitations to the 

optical flow representation of real motion information The 

spatial-temporal Laplacian pyramid coding method 

proposed by Shao et al. [38] was designed for video 

representation. Using CNN, Wang et al. [39] proposed a 

method for expressing trajectory features using a dense 

trajectory. A multi-scale trajectory pooling 3D 

convolutional descriptor for action recognition was 

developed by Lu and colleagues [40]. By stacking motion 

features, atoms, and phrases, Wang et al. [41] have 

developed a multi-level video representation. “Line 

pooling”, a method for efficiently pooling stacked features 

along the timeline, was developed by Zhao and colleagues 

[42]. To capture long-term temporal information, Varol 

and colleagues [43] proposed a long-term 3D CNN. Using 

Weber's law-based Volume Local Gradient Ternary 

Pattern (WVLGTP) and a new convolutional network, 

Uddin et al. [44] proposed a handcrafted feature descriptor 

for deep spatial features. Then, combining the handcrafted 

spatiotemporal feature with a deep spatial feature for 

action recognition is necessary. In the following 

subsections we will introduce the utilized deep learning 

networks: 

A. Convolutional Neural Network (CNN) 

Convolutional Neural Networks are made up of several 

layers of artificial neurons. Artificial neurons, like their 

biological counterparts, are mathematical functions that 

assess the weighted number of numerous inputs and 

produce an activation value. The weight of each neuron 

determines its behavior. When given pixel values, the 

artificial neurons of a CNN pick out numerous visual 

characteristics. 

When you feed it an image, each ConvNet Layer 

generates many activation maps. Activation maps 

highlight the image's most important features. Each neuron 

takes a pixel patch as input, multiplies the colour values by 

the weights, adds them all together, and then runs them 

through the activation algorithm. 

 

Figure 1.  Convolutional neural network steps. 

The CNN's first sheet detects basic characteristics such 

as horizontal, vertical, and diagonal edges. The output of 

the first layer is passed into the second layer, which 

eliminates more complicated characteristics such as 

corners and edge combinations. As you move further into 

the convolutional neural network, the layers identify 

higher-level characteristics such as objects, faces, and 

more. Convolution is the process of multiplying and 

summing pixel values by weights. A CNN is generally 

composed of multiple convolution layers, but it may also 

have additional components. The final layer of a CNN is 

the classification layer, which receives the output of the 

final convolution layer as input. 

Based on the activation map of the last convolution 

layer, the classification layer provides a set of confidence 

scores (numbers ranging from 0 to 1) that indicate how 

probable the picture is to belong to a “class.” For instance, 

if a ConvNet identifies cats, and dogs, the final layer's 
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output is the likelihood that the input picture contains any 

of those animals. Fig. 1 shows a sample of CNN which 

classify dogs and cats pictures. 

B. Recurrent Neural Network (RNN) 

RNNs are artificial neural networks that deal with time 

series or sequential data. These deep learning algorithms 

are frequently employed for ordinal or temporal issues like 

as language translation, natural language processing 

(NLP), speech recognition, and picture captioning, and 

they may be found in popular apps such as Siri, voice 

search, and Google Translate. Feedforward and 

convolutional neural networks (CNNs) are examples of 

recurrent neural networks that learn from training input. 

They are distinguished by their “memory”, which enables 

them to impact current input and output by drawing on 

knowledge from prior inputs. Although traditional deep 

neural networks believe that inputs and outputs are 

independent of one another, recurrent neural networks' 

performance is dependent on the sequence's prior elements. 

Although future events can be useful in deciding a 

sequence’s performance, unidirectional recurrent neural 

networks cannot account for them in their predictions. 

LSTM: The long short-term memory (LSTM) 

architecture is a deep learning architecture that is built on 

an artificial recurrent neural network (RNN). Unlike 

traditional feedforward neural networks, LSTM contains 

feedback connections. It is capable of processing not just 

single data points (such as pictures), but also whole data 

sequences (such as speech or video). LSTM may be used 

for tasks such as unsegmented, linked handwriting 

recognition, speech recognition, and anomaly detection in 

network traffic or intrusion detection systems, to name a 

few (intrusion detection systems). A cell, input and output 

gates, and a forget gate comprise an LSTM unit. These 

gates regulate the cell's information flow, and the cell 

stores values for arbitrary time periods. 

Since there may be lags of uncertain length between 

important events in a time series, LSTM networks are 

well-suited for time series data classification, processing, 

and prediction. LSTMs were developed to address the 

issue of vanishing gradients that can occur when 

conventional RNNs are trained. In many applications, 

LSTM has an advantage over RNNs, secret Markov 

models, and other sequence learning methods due to its 

relative insensitivity to gap length. 

GRU: The Gated Recurrent Unit (GRU) is a form of 

recurrent neural network (RNN) that has advantages over 

long short-term memory (LSTM) in some situations. GRU 

is faster and requires less memory than LSTM. GRU will 

be explained in Section III.C. 

III. RESEARCH METHODOLOGY 

The proposed algorithm is divided into two main parts, 

CNN and RNN, where we rely on CNN to extract the 

activations from each frame of the video and then pass it 

to the RNN to classify the human action. 

In the first part, after trying several methods, we found 

that the fusion of GoogleNet and Inception-ResNet-V2 

gives the best results in terms of accuracy compared to 

other methods, so we will explain this method in the 

following. 

This strategy was used to obtain the best results for 

videos recognition in this paper. The frames from the video 

are splitted and cropped to the center and then resized to 

(299×299) and (224×224) to suit the two networks.  

Our deep GRU network consists of two steps we 

configured the output mode as a sequence in the first step 

to pass the complete sequence to the second one which the 

output mode configured as last to get the last time step of 

the sequence. 

Fig. 2 shows the general block diagram of the proposed 

human action recognition algorithm. 

 

Figure 2.  Proposed human action recognition algorithm block diagram. 
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A. GoogleNet 

The Inception Network was a key development in the 

study of Neural Networks, namely CNNs. Inception 

Networks is available in three versions: Inception Version 

1, Inception Version 2, and Inception Version 3, beside 

Inception-ResNet. In the ILSVRC, this network was 

responsible for establishing a new state-of-the-art for 

classification and detection. GoogleNet is the name given 

to the first iteration of the Inception network. 

Overfitting is a problem that can occur when a network 

is designed with numerous deep layers. The authors of the 

research study and provide a solution to this difficulty. 

Going deeper into convolutions, the GoogleNet 

architecture was presented, which consists of multiple-size 

filters that can function on the same level. The network 

becomes larger rather than deeper as a result of this 

concept. 

 

Figure 3.  GoogleNet convolution procedure. 

The convolution procedure is conducted on inputs with 

three filter sizes, as shown in Fig. 3 (1×1), (3×3), and (5×5). 

The convolutions are additionally subjected to a max-

pooling procedure before being transferred to the next 

inception module. 

Because training neural networks takes time and 

resources, the authors reduce the number of input channels 

by inserting an extra (1×1) convolution before the (3×3) 

and (5×5) convolutions to decrease the network's 

dimensions and speed up computations.  

The GoogleNet Architecture has a total of 22 layers, 

including 27 pooling layers. There are a total of 9 inception 

modules layered linearly. The global average pooling layer 

is connected to the ends of the inception modules. 

• Residual Inception Blocks: 

Inception and ResNet have been at the heart of the most 

significant advances in image recognition performance in 

recent years, providing great results at a low computational 

cost. The Inception-ResNet architecture combines 

Inception with residual connections. For the residual 

versions of the Inception networks, they used cheaper 

Inception blocks than the original Inception. Following 

each Inception block is a filter-expansion layer (1×1 

convolution) without activation, which is used to scale up 

the dimensionality of the filter bank before adding it to 

match the depth of the input. This is necessary to 

compensate for the Inception block's reduced 

dimensionality. 

Another minor technical distinction between the 

residual and non-residual Inception variations is that they 

employed batch-normalization solely on top of the 

standard layers in Inception-ResNet, but not on top of the 

summations. Although it is reasonable to think that 

extensive batch normalization would be beneficial, they 

wanted each model replica to be able to be trained on a 

single GPU. The memory footprint of layers with large 

activation sizes turned shown to be utilizing an excessive 

amount of GPU RAM. they were able to significantly 

increase the overall number of Inception blocks by 

eliminating the batch normalization on top of those layers 

Fig. 4 shows the residual inception blocks used in 

GoogleNet. 

 

 

Figure 4.  GoogleNet residual inception blocks. 

• Scaling of the Residuals: 

After more than one thousand filters are used, the 

instabilities of the residual variants began to appear, and 

the network simply ‘died’ early in the training, which 

means the last layer before the average pooling began to 

produce just zeros after a few tens of thousands of 

iterations. This could not be avoided, regardless of whether 

the learning rate was reduced, or an additional batch 

normalizing layer was added.as shown in Fig. 5. 

 
 

Figure 5.  GoogleNet scaling of the residuals. 
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B. Inception-ResNet-V2 

Over a million images from the ImageNet collection 

were used to train the CNN Inception-ResNet-V2. The 

164-layer network is capable of classifying images into 

1000 different item categories. Consequently, the network 

has learnt a wide range of rich feature representations for 

a wide range of pictures. The network is fed a 299×299 

picture and returns a list of predicted class probabilities. It 

is based on the Inception architecture and the Residual 

connection idea. In the Inception-ResNet block, several 

sized convolutional filters are combined with residual 

connections. The introduction of residual connections 

eliminates the degradation problem caused by deep 

structures while significantly reducing training time. Fig. 

6 shows the architecture of Inception-ResNet-V2. 

 

Figure 6.  Inception-ResNet architecture. 

In the second part of the proposed algorithm, we pass 

the obtained activations from Inception-ResNet-V2 and 

GoogleNet to a deep GRU, and finally, there is the softmax 

layer to identify the action in the sequences. 

C. Gated Recurrent Unit (GRU) 

GRU is faster and requires less memory than LSTM. 

GRUs also solve the vanishing gradient problem (values 

used to change network weights), which is a problem with 

traditional recurrent neural networks. If the grading 

shrinks as it back propagates over time, it can become too 

small to impact learning, rendering the neural net 

untrainable. 

RNNs will effectively “forget” longer sequences if a 

layer in a neural net is unable to remember. The update 

gate and the reset gate are used by GRUs to solve this 

problem. These gates control what information is allowed 

to pass through to the output and can be programmed to 

remember information for a longer period. This enables it 

to move specific data down a chain of events to make more 

accurate predictions. 

The update gate works similarly to the LSTM's forget 

and input gateway. It decided what new information to add 

and what information to get rid of. 

The reset gate is used to determine how much past 

information should be forgotten. Fig. 7 shows the 

architecture of GRU. 

 

Figure 7.  GRU unit. 

𝑟𝑡 =  𝜎( 𝑊𝑥𝑟
𝑇  .  𝑥𝑡 + 𝑊𝑜𝑟

𝑇  . 𝑜𝑡−1 +  𝑏𝑟  )                (1) 

𝑧𝑡 =  𝜎( 𝑊𝑥𝑧
𝑇  .  𝑥𝑡 + 𝑊𝑜𝑧

𝑇  . 𝑜𝑡−1 + 𝑏𝑧 )  (2) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ( 𝑊𝑥�̃�
𝑇  .  𝑥𝑡 +  𝑊𝑜�̃�

𝑇  . (𝑟𝑡  ⊗ 𝑜𝑡−1) +  𝑏�̃� ) (3) 

𝑜𝑡 =  𝑧𝑡 ⊗ 𝑜𝑡−1 + ( 1 − 𝑧𝑡  ) ⊗  �̃�𝑡    (4) 

𝜎 =  
1

1+ 𝑒−𝑡     (5) 

𝑡𝑎𝑛ℎ(𝑡) =  
1− 𝑒−2𝑡

1+ 𝑒−2𝑡    (6) 

where 𝑊𝑥𝑟 , 𝑊𝑥𝑧, 𝑊𝑥�̃� are the weights of the matrices for 

the corresponding connected input vector, 𝑊𝑜𝑟  , 𝑊𝑜𝑧 , 𝑊𝑜�̃� 

represent the weight matrices of the previous time step and 

𝑏𝑟 , 𝑏𝑧 , 𝑏�̃� are bias 

Our deep GRU network consists of two steps; each one 

has 1000 hidden layers, and the state activation function is 

tanh, and the gate activation function is sigmoid. 

The final step in the algorithm is the SoftMax layer 

which shows the result of the classification.  

IV. EXPERIMENT RESULTS 

A. Experimental Setup 

The video datasets UCF-101 and HMDB-51 were used 

to evaluate the performance of the proposed two-stream 
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network. There are 13320 video clips in the UCF-101, 

which are divided into 101 categories and 5 action groups 

(i.e., Human-Object Interaction, Sports, Playing Musical 

Instrument, Body Motion, and Human-Human Interaction). 

The UCF-101 has a low noise level and mostly contains 

motion-related frames. According to the dataset's official 

publication, there are three types of train/test splits, and the 

final accuracy is calculated by averaging the results of the 

three divides. The HMDB-51 has 6766 video clips 

organized into 51 categories and five action groupings (i.e., 

face actions, face actions with object manipulation, human 

body movements, human body movements with object 

interaction, and human body movements for human 

interaction). As summarized in Table I. 

TABLE I.  VIDEO DATA SETS 

dataset No. of clips 
No. of 

categories 

No. of groups 

UCF-101 13320 101 5 

HMDB-51 6766 51 5 

 

In the training procedure, we utilized a learning rate of 

0.001 and 30 epochs. 

The experiments of this paper have been carried out 

using the following experimental setup: Intel Core i7 9th 

Gen processor of 2.60 GHz, a memory of 16 GB, and 

Nvidia Geforce 1660Ti with 6 GB RAM as the hardware 

platform and Windows 10 operating system and Matlab 

2020a as a software platform. 

B. Performance Evaluation and Comparisons  

In this section, we illustrate the results from the 

experiments in quantitative and qualitative means. We first 

quantitatively compare the results of the proposed 

algorithm to the results of othet algorithms. All these 

algorithms are applied to the same data sets. The 

performance evaluation is conducted in terms of accuracy. 

To quantitatively compare our proposed algorithm to 

the exceptional state-of-the-art algorithms, concerning the 

accuracy of testing sequences and the confusion matrix. 

Table II shows the results of applying the proposed 

algorithm to UCF-101 and HMDB-51 datasets in terms of 

accuracy. Moreover, it compares these results to the results 

of applying state-of-the-art algorithms to the same datasets. 

The results clearly show that the proposed algorithm 

outperforms the othet algorithms in both datasets. 

The next step is to evaluate the performance of the 

proposed algorithm with the two CNN networks separately. 

In Table II and Table III, we show the accuracy results of 

using each method individually and the proposed fusion 

method which displays the enhancement of the accuracy in 

both datasets as the accuracy was 97.97% for the UCF-101 

and 73.12% for HDMB-51, while the accuracy of the 

GoogleNet was 92.23% for the UCF-101 and 64.53% for 

HDMB-51and of the Inception-ResNet-V2 was 95.51% 

for the UCF-101 and 67.09% for HDMB-51. 

 

 

 

TABLE II.  APPLIED ALGORITHMS RESULTS 

network dataset accuracy Time(min) 

GoogleNet 

UCF-101 

92.23 115 

Inception 95.51 135 

proposed 97.97 184 

GoogleNet 

HMDB-51 

64.53 40 

Inception 67.09 45 

proposed 73.12 60 

TABLE III.  ALGORITHMS ACCURACY 

Method 
UCF-101 
Accuracy 

HMDB-51 
Accuracy 

C3D(3net) (2015) 85.2% - 

Two-stream CNNs (2014) 88.0% 59.4% 

EMV+RGB-CNN (2016) 86.4% - 

RLSTM-g3 (2016) 86.9% 55.3% 

Multiple dynamic images 

(2016) 
89.1% 65.2% 

Factorized spatio-temporal 
CNNs (2015) 

88.1% 59.1% 

Temporal pyramid CNNs 

(2015) 
89.1% 63.1% 

DTMV+RGB-CNN 
(2018) 

87.5% 72.5% 

LSF-CNN (2020) 94.8% 70.2% 

proposed method 97.97% 73.12% 
 

Fig. 8 and Fig. 9 show the accuracy and losses of the 

validation videos of the UCF-101 dataset during each of 

the thirty epochs of the training process for the three 

networks. These results show that the proposed method is 

more accurate and has fewer losses than the Inception-

ResNet-V2 and GoogleNet, while Fig. 10 and Fig. 11 show 

the accuracy and losses of the HMDB-51 dataset with the 

same parameters. The accuracy of the HMDB-51dataset is 

always less than the accuracy of the UCF-101 dataset 

because of the challenges in the HMDB-51 dataset 

(camera motion, the small size of the object, and 

illumination issues, …) which make it difficult to classify 

the actions in the videos, but the proposed method is also 

more accurate than the two individual networks.  

 

Figure 8.  Applied algorithms accuracy for UCF-101 data set. 
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Figure 9.  Applied algorithms losses for UCF-101 data set. 

 

Figure 10.  Applied algorithms accuracy for HMDB-51 data set. 

 

Figure 11.  Applied algorithms losses for HMDB-51 data set. 

 

Figure 12.  Fusion matrix for proposed algorithm with UCF-101 dataset. 

 

Figure 13.  Fusion matrix for Inception with UCF-101 dataset. 

 

Figure 14.  Fusion matrix for GoogleNet with UCF-101 dataset. 

We utilized the UCF-101 dataset's whole 101 activities 

and reported their performance using the confusion 

matrices given in (Figs. 12−14). The confusion matrices 

clearly show that most of the activities in Fig. 12 are 

correctly classified when compared to Fig. 13 and Fig. 14. 

Furthermore, we can see that our method outperforms the 

individual networks. Similarly, we utilized all 51 actions 
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in the HMDB-51 and reported the performance with the 

confusion matrices in (Figs. 15−17), and the result 

outperforms the proposed technique as in the UCF-101 

dataset. In a few cases, combined Inception and GoogleNet 

provide the same results; otherwise, our proposed 

approach produces greater overall performance. 

 

Figure 15.  Fusion matrix for proposed algorithm with HMDB-51 
dataset. 

 

Figure 16.  Fusion matrix for Inception with HMDB-51 dataset. 

 

Figure 17.  Fusion matrix GoogleNet with HMDB-51 dataset. 

 

Figure 18.  Samples of correct classified actions. 

 

Figure 19.  Samples of missed classified actions. 

In Fig. 18, we show samples of the best-recognized 

categories and its confusion matrix like Bowling at the first 

row with 39 correct recognitions, and Boxing Punching 

Bag at the second row with 25 correct recognitions. On the 

other hand, Fig. 19 shows samples of missed classified 

actions like Javelin throw at the first row, and Frisbee catch 

at the second row, and this is because of many challenges 

like the illumination and very small size of objects. 

V. CONCLUSION 

This article proposes a new method for human action 

recognition based on CNN and Deep GRU using only raw 

video frames. To begin, deep features of video frames are 

extracted using the Inception-ResNet-V2 and GoogleNet 

pre-trained Convolutional Neural Networks architecture, 

which speeds up the learning process and improves 

performance. The sequence information of the frames is 

then learned using the DB-GRU recurrent network in both 

forward and backward transitions, and the final 

classification is completed. 

In comparison to state-of-the-art approaches, simulated 

results using Matlab show that the proposed method 

performs exceptionally well in HAR from video on the 

UCF101 and HMDB-51 datasets. This investigation's 

accuracy was improved through proper input parameter 

adjustments and the fusion of Inception-ResNet-V2 and 

GoogleNet with deep GRU. In future work, this method 

could be applied in human action recognition applications 

(power consumption reduction in smart homes depending 

on the mode of human actions, the control of the drones by 

hand signs, and sign language recognition programs).  
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