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Abstract—Reliable Cardiovascular Disease (CVD) 

classification performed by a smart system can assist medical 

doctors in recognizing heart illnesses in patients more 

efficiently and effectively. Electrocardiogram (ECG) signals 

are an important diagnostic tool as they are already available 

early in the patients’ health diagnosis process and contain 

valuable indicators for various CVDs. Most ECG processing 

methods represent ECG data as a time series, often as a 

matrix with each row containing the measurements of a 

sensor lead; and/or the transforms of such time series like 

wavelet power spectrums. While methods processing such 

time-series data have been shown to work well in benchmarks, 

they are still highly dependent on factors like input noise and 

sequence length, and cannot always correlate lead data from 

different sensors well. In this paper, we propose to represent 

ECG signals incorporating all lead data plotted as a single 

image, an approach not yet explored by literature. We will 

show that such an image representation combined with our 

newly proposed convolutional neural network specifically 

designed for CVD classification can overcome the 

aforementioned shortcomings. The proposed (Convolutional 

Neural Network) CNN is designed to extract features 

representing both the proportional relationships of different 

leads to each other and the characteristics of each lead 

separately. Empirical validation on the publicly available 

PTB, MIT-BIH, and St.-Petersburg benchmark databases 

shows that the proposed method outperforms time series-

based state-of-the-art approaches, yielding classification 

accuracy of 97.91%, 99.62%, and 98.70%, respectively.  
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I. INTRODUCTION 

A typical ECG signal consists of several simultaneously 

recorded sensor signals, also known as ECG leads (e.g., 12 

or 15 parallel leads is common). Conventional state-of-the-

art methods for automatic ECG classification [1–11] 

represent the ECG signals as time-series of sampled 

measurements, and design methods to process these data 

and perform the classification. In [11], authors have 

developed a multi-scale CNN to process the matrix of 

input time-series signal and classify the 8-lead ECGs. The 
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work in [12] applies an attention mechanism (to estimate 

which parts of the time-series signal are more important to 

focus on during learning) and LSTM to the ECG signal and 

its wavelet power spectrum. Then, it combines the results 

to generate the classification. Tan et al. [8] proposed a 

combined implementation of a LSTM network together 

with CNN for CVD identification from ECG signals. This 

work uses wavelet transformation to reduce noise from 

input time-series data. Hasan and Bhattacharjee [9] 

proposes a method to classify multiple CVDs using a one-

dimensional CNN where a modified ECG signal is given 

as an input signal to the network. The work enhances the 

input signal quality by reducing the noise using the 

empirical mode decomposition technique. 

Generally, such methods are prone to noise in the 

recorded signal [9]. To diminish the effect of noise, several 

works have attempted to employ complementary noise 

reduction approaches to enhance the signal-to-noise ratio. 

We propose an alternative approach plotting ECG data 

points on frames and treat them as graphical images. With 

this, the dependency of method performance to the input 

noise is highly decreased because the effect of the noise 

signal on the whole image is neglectable. Then, we design 

an elaborated deep-learning network for processing this 

data representation. According to the empirical validation 

on three benchmark databases, the proposed method 

performs better classification compared to the 

conventional time-series based methods, since this method 

is more resilient to noise and effects of data pre-processing, 

and can pick-up significant patterns more effectively 

compared to operating on raw time-series data. 

This paper is organized as follows: Section II explains 

the proposed method in detail. Section III presents the 

experimental results and validation.  

II. IMECGNET: IMAGE-BASED ECG NETWORK 

This section presents the ImECGnet. First, we provide 

an overview of the proposed method. Then, we explain 

each part of the architecture in detail. 
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A. Architecture Overview 

Fig. 1 illustrates the architecture of the proposed 

ImECGnet. The proposed network receives a mini-batch 

of generated ECG images as input. Then, it extracts a 

feature embedding for the input images using a backbone 

network. Thereupon, the extracted embedding is further 

investigated using two parallel branches. These branches 

are elaborately designed to generate more indicative 

feature representation of input images by further 

discriminating the extracted feature embedding. The 

branches process the backbone network's extracted feature 

embedding to generate specific features of lead-oriented 

and channel information. This multi-branch type of 

architecture is inspired by recent methods developed for 

computer vision re-identification applications like 

MGN [13] and PRN [14], which show significant 

improvement in re-identification performance for 

pedestrian and vehicles, respectively. The proposed 

ImECGnet exploits two branches and uses a SoftMax loss 

function to calculate the gradients required in the training. 

B. ImECGnet Description 

This subsection explains each part of the proposed 

ImECGnet in detail, as illustrated in Fig. 1. 

 

 

Figure 1. ImECGnet architecture. Lead branch extracts the overall and lead-based features. The channel branch extracts the correlations between feature 

maps of the CNN. FC stands for the fully connected layer. The parameter n represents the number of recorded leads in the original ECG signal (e.g. 

n=15 for the PTB database). 

 

Figure 2. Four image-based ECG examples generated from different ECG signals of the PTB database. Each image is generated by firstly concatenating 

1,000 consecutive datapoints of 15 simultaneous leads of the selected ECG signal (i.e. 15,000 datapoints in total), and then plotting them on the same 
frame. Proportional relationships of leads to each other are sensible in each image (based on the corresponding CVD). 

1) Generation of input images  

The data in an ECG database are time-series data points, 

digitized at a specific frequency from recorded ECG 

signals. As mentioned in previous sections, state-of-the-art 

methods employ these data as digitized data points (matrix 

format). In this work, we propose to employ the ECG data 

as images. To this end, we select 1,000 digitized data 

points of all ECG leads and concatenate them in a 

sequential manner (on the horizontal axis). The selected 

1,000 digitized data points from leads are chosen from 

overlapping parts of the simultaneously recorded ECG 

leads. However, in order to preserve inter/intra-sequence 

features, these 1,000 data points are chosen from random 

parts of the input ECG signal. With this, we have applied 

a data augmentation technique, which also reduces the 

dependency of the system on specific parts of the ECG 

signal. This overlapping strategy is adopted from the work 

in [9]. 

After generating the concatenated ECG sequences, we 

add a second dimension for each data point of the sequence, 

representing the number of the data point in the sequence. 

This means each data point will now be represented by an 

ordered pair of (x, y), where x is the number of each data 

point in the generated ECG sequence and y is the value of 

the corresponding data point. Then, we plot these ordered 

pairs on a 2D image frame, where the horizontal and 

vertical axes represent the x and y dimensions of ordered 

pairs, respectively. We perform this plotting operation 

using the plot function of Python, which also applies 

interpolation between discrete data points. The plotting 

occurs on image frames of the same size with 600 dpi 

resolution for all ECG samples. At the end, the generated 

images have dimensions of 2,199 × 2,725 pixels (height × 

width). These images will be later downsampled by 

ImECGnet to a size of 314 × 384 pixels, keeping the aspect 

ratio. Then, ImECGnet applies conventional 

standardization techniques on the resized input images. 

Fig. 2, illustrates few examples of the generated images for 

different CVD classes of PTB database. Here, it is 

important to mention that there are few ECG classification 
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works in the literature, which also represent their input 

ECG data as images [15–17]. However, these works obtain 

their input images using the spectrogram of ECGs or the 

graphical print-outs of ECG measuring machines, while 

our work preserves and plots every ECG data-point in the 

generated ECG image. 

2) ImECGnet architecture 

The proposed ImECGnet investigates the input images 

to extract three types of features: a) overall features, which 

yield information produced by concatenation of leads 

altogether, and consequently, represent the proportional 

relationships of leads to each other, b) lead-based features, 

which represent the information produced by each ECG 

lead separately, and c) channel information, which express 

the correlation existing among feature maps of the CNN. 

From a design perspective, generally, CNNs are 

constructed as a sequence of feature extraction layers (e.g. 

convolutional layers), such that the earlier layers extract 

shallower features from input images, and then, the 

following layers extract deeper features upon the shallower 

features. For example, in a CNN designed for the 

classification of objects, shallower layers extract common 

features for all classes (e.g., curves and lines), while deeper 

layers extract class-specific features (e.g. tires of a car). 

The mentioned three types of features targeted by the 

ImECGnet are deep information. Therefore, the design 

needs a backbone network to extract the shallower features 

embedding (the coarse portion of the required feature 

representation). This will be followed by ECG-oriented 

layers, designed specifically to further process the 

obtained feature embedding for the intended application. 

Hence, we explain the designed CNN as a backbone 

network and a multi-branch network as follows. 

a) Backbone network 

In order to facilitate the procedure of designing the 

multi-branch network, an initial set of layers from reliable 

classification CNNs are employed as a backbone network. 

This work employs the initial set of layers from the ResNet 

[18] as the backbone network, which is a well-known 

network for its robust performance against the vanishing 

gradients problem. The network has several versions, 

depending on the number of internal layers like Renet18, 

ResNet34, ResNet50, etc. For example, in ResNet50, the 

number 50 represents the number of layers of the network. 

In order to select the right version for our purpose, we have 

separately trained ResNet18, ResNet34, and ResNet50 

(without the multi-branch design) on our image-based 

ECG data. After experimental validation, we have noticed 

that ResNet50 is working best among others on our ECG 

image data. Therefore, we employ ResNet50 as our 

backbone network to extract the feature maps for each 

image of the mini-batch. Then, the extracted feature maps 

at the end of the Conv4_1 layer (see [18] for details) are 

duplicated two times and are fed separately into the two 

branches. In other words, these branches will be developed 

on top of separate copies of the Conv4_1 layer of the 

ResNet50. In the remainder of this paper, we will refer to 

each of these duplications of feature maps as a feature 

embedding. Both the lead and channel branches will then 

further process their embeddings to construct meaningful 

features in a parallel manner. 

b) Multi-branch design 

The core contribution of ImECGnet is its proposed  

2-branch architecture, specifically designed to address the 

ECG classification problem. These branches are named as 

a lead branch and channel branch (as illustrated in Fig. 1), 

which concentrate on the lead and channel-wise structures 

existing in their input feature embedding, respectively. 

The lead branch performs two independent partitioning 

operations on the width dimension of its input feature 

embedding. The outcomes of these operations are 1 and n 

separate feature volumes. Here, the parameter n represents 

the number of leads per each ECG signal in the original 

database. The n value for PTB, MIT-BIH, and St.-

Petersburg benchmark databases is 15, 2, and 12, 

respectively. The partitioning operation into n separate 

feature volumes generates volumes that contain an equal 

fraction of the input feature embedding. In the lead branch, 

partitioning the input feature embedding into 1 volume 

aims in duplicating the whole input feature embedding into 

a separate volume, which intends in preserving the global 

features of the embedding for the following steps. In the 

remainder of this paper, we will call this duplicated 

volume (the 3D block depicted at the leftmost side of the 

branch) the global volume. The motivation behind 

partitioning the global volume into n horizontally-

partitioned volumes is the following. The n ECG leads are 

concatenated on the horizontal axis while generating ECG 

images. Therefore, this horizontal partitioning will 

separately give the chance to each lead to play a role in the 

final decision. In a parallel manner, the channel branch 

performs the operation of partitioning its input feature 

embedding into 4 equally-sized volumes of features. This 

partitioning occurs across the depth dimension of the input 

feature embedding, where the different feature vectors of 

the CNN are stacked. This partitioning intends at 

discovering the correlations between different feature 

maps of the feature embedding. 

As illustrated in Fig. 1, generating these n+5 partitioned 

volumes out of the input feature embedding is followed by 

a three-phase procedure of further processing the resulting 

feature vectors. Phase A, separately shrinks the generated 

feature volumes into 1D feature vectors using global max-

pooling operations. The resulting feature vectors have the 

size of 2,048 and 512 for the lead and channel branches, 

respectively. Then, phase B equalizes the size of the 

constructed feature vectors to a size of 256 using 1 × 1 

convolutional operations. This phase also applies a batch 

normalization operation on the resulting feature vectors. 

Afterwards, phase C applies a separate fully-connected 

(FC) layer to the feature vectors constructed in phase B. 

The output dimension of these FC layers is equal to the 

number of ECG classes (Nb_classes). The outputs of the 

FC layers provide the score of each feature vector for each 

class. These outputs are processed by a separate FC layer, 

depicted in at the rightmost side of the diagram in Fig. 1, 

before SoftMax block. The input and out dimensions of 

this FC layer are (n+5) × Nb_classes and Nb_classes, 

respectively. The parameter Nb_classes stand for the 

Journal of Image and Graphics, Vol. 11, No. 1, March 2023

11



number of CVD classes for the database. In training time, 

these outputs of this FC layer are transferred into a 

SoftMax CE loss block to generate the gradients for 

training the network. In test time, these outputs are 

employed in making the final classification decision. 

III. EMPRICAL VALIDATION 

This section presents the experimental material and 

results. First, the employed databases are introduced. Then, 

the evaluation settings are explained. Finally, the empirical 

validation of the proposed method is presented.  

A. Benchmark Databases 

This work evaluates the proposed ImECGnet method on 

three publicly available benchmark databases. The first 

database is the PTB [19] database, which encompasses 549 

ECG records from 290 subjects. Each record contains 15 

simultaneously measured signals (i.e. ECG leads). The 

database contains 9 classes of CVDs. The second database 

is MIT-BIH [20] database. This database contains 48 half-

hour ECG measurements with two leads, digitized at 360 

samples per channel from 47 subjects. This database 

includes 4 classes of CVDs. The third database is St.-

Petersburg database [21], which contains 75 half-hour 12-

leads ECGs, digitized at 257 Hz. This database is 

comprised of 9 CVD classes. The class labels for some of 

the ECG recordings of the MIT-BIH and St.-Petersburg 

databases are not provided in the original database.  

B.   Evaluation Setup 

To the best of our knowledge, the work in Hasan and 

Bhattacharjee’s [9] provides the best results for CVD 

classification from ECG signals among state-of-the-art 

methods, which is evaluated on the PTB, MIT-BIH, and 

St.Petersburg databases. We will refer to that work as Ref-

ECG in the following, and use it as an evaluation baseline. 

We mimic the evaluation setup in Ref-ECG for easier 

comparison. 

Ref-ECG applies a specific CNN to ECG samples 

generated in a 1D vector format with a length of 1,000 data 

points extracted from original ECG signals. To generate 

the 1D input vectors, the mentioned work has performed 

an element-wise summation over simultaneously recorded 

data points from all leads of an ECG signal. Here, it is 

important to mention that the authors of the work in Hasan 

and Bhattacharjee’s [9] also introduce a specific transform 

which reduces the noise level of the raw ECG signals. 

Evidently, the Ref-ECG can yield a better performance 

using this noise reduction technique. However, we only 

train and test the Ref-ECG method on ECG samples 

generated from raw ECG recordings, as is the case for 

ImECGnet. With this, we aim to prove the efficiency of 

image representation-based ImECGnet in dealing with 

noisy ECG signals. 

However, the results originally reported by Ref-ECG in 

Hasan and Bhattacharjee’s [9] are not fully reproducible: 

1) The methodology of creating training data is not 

 
1 These labels are generated by a medical doctor, as mentioned in the 

acknowledgment. 

described in detail. Some records of MIT-BIH and 

St.Peterburg datasets are unlabeled, and there is no 

information on how these records were treated. Also the 

overlap values used while extracting the 1,000 data points 

of each ECG sample from the longer original ECG signals 

were not provided. Furthermore, two classes of the PTB 

database are omitted without further explanation. Thus, we 

could not recreate the same training and test samples using 

the graphical feature representation used by ImECGnet; 2) 

The provided code base is outdated and could not be 

executed without failure. 

Therefore, we opted for method reproducibility of Ref-

ECG, creating new test and training datasets from the three 

benchmark databases, and using our own re-

implementation of Ref-ECG as a baseline for our 

experiments. We have asked a medical doctor to provide 

the CVD labels for the non-labeled records of the MIT-

BIH and the St.-Petersburg database1. Then, we generated 

both the 1D vector-based (for Ref-ECG) and image-based 

(for ImECGnet) training and test sets with new overlap 

values for both methods. In order to have a fair comparison, 

we aim to generate training and test sets which include the 

exact same ECG samples (i.e. ECG samples extracted 

from the same parts of original lengthy ECG recordings). 

All of these ECG samples have the length of 1,000 data 

points. The only difference between the samples of the 

training and test sets provided for Ref-ECG and ImECGnet 

is that the samples generated for Ref-ECG are in 1D vector 

format (1 × 1,000 vector created by element-wise 

summation of the corresponding ECG leads, as in [9]), 

while the samples generated for ImECGnet are in 2D 

image format, as explained in Section II. At the end, we 

have trained and tested both the Ref-ECG and ImECGnet 

methods by implementing and running the required codes 

on our machine. 

In addition to the Ref-ECG, we have also developed two 

naive image-based baseline models to showcase the 

benefits of the aforementioned ImECGnet optimizations. 

These baselines, which are ResNet34 and ResNet50, vary 

in terms of complexity and having a different number of 

network layers. These networks (which are pre-trained on 

ImageNet) are re-trained on our generated image-based 

ECG datasets. The difference between ImECGnet and 

these baseline networks is the unique multi-branch 

architecture of the ImECGnet. 

C.   Validation Results and Discussion 

In order to have a fair comparison between the proposed 

ImECGnet and other employed methods, we have 

employed the same training settings. For the training 

purpose of all these networks, we have employed the 

stochastic gradient descent optimizer with momentum for 

12 epochs. The initial learning rate is set to 1×10−3, which 

is reduced to one-tenth of this value after every 3 epochs. 

Table I presents the CVD classification results. The Ref-

ECG is adopted from literature, while rest of the methods 

in the table are extracted from our research work. 

According to the table, all the methods based on image 
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representation of ECG samples outperform the time-series 

based Ref-ECG. For example, the ImResNet50 (i.e., 

baseline ResNet50 applied to image ECG data) generates 

approximately 18% higher accuracy compared to Ref-

ECG on the St.-Petersburg database. Additionally, 

ImECGnet performs better than all methods, including 

image-based baseline ImResNet34 and ImResNet50. For 

example, ImECGnet provides almost 3% higher accuracy 

on the St.-Petersburg database compared to ImResNet50. 

This shows the following two aspects: a) the advantages of 

treating ECG leads as visual images by classification 

system, and b) the capacity of multi-branch ImECGnet in 

processing the image-based ECG data using overall, lead-

based, and channel-based features. 

TABLE I. IMECGNET PERFORMANCE ANALYSIS. THE PROPOSED 

METHOD PROVIDES HIGHER ACCURACY COMPARED TO OTHER 

METHODS TRAINED ON THE SAME DATA AND UNDER THE SAME 

SETTINGS 

Metric Accuracy (%) 

 Database PTB MIT-BIH St.-Petersburg 

 Ref-ECG [9] 88.04 97.95 77.62 

 ImResNet34 95.46 99.40 93.49 

 ImResNet50 96.83 99.37 95.76 

 ImECGnet 97.91 99.62 98.70 

 

This paper proposes an automated CVD classification 

of ECG recordings. In contrast to established work, the 

proposed method represents input ECG records as images, 

which are generated by concatenating the data points of 

different leads of ECG recordings and plotting them on 

image frames. To the best of our knowledge, this paper is 

the first reported research work that represents ECG 

records by concatenating the lead data and plotting them 

on images. Second, the proposed ImECGnet is specifically 

designed to process such kind of the data. This network is 

a CNN which further investigates the extracted feature 

embedding to obtain information representing a) the 

correlation of different leads with each other, b) each lead's 

characteristics, and c) channel-oriented properties. The 

proposed method outperforms state-of-the-art methods by 

producing up to 21% higher classification accuracy. This 

proves both the potential of the generated image-based 

representation in ECG analysis and the efficiency of the 

proposed ImECGnet. It is also important to mention that 

our approach is able to perform classification based on 

very short input signals (e.g. 1 second) since it does not 

rely on a long-time sequence of data points. For future 

work, the design of the proposed network can be more 

elaborated to provide even higher performance. 
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